Fluorescence, Induced Circular Dichroism and Molecular Mechanics of 1-Methyl Naphthalenecarboxylate Complexes with 2-Hydroxypropyl Cyclodextrins

María José González-Álvarez • Antonio Di Marino •
Francisco Mendicuti

Received: 11 July 2008 / Accepted: 14 October 2008 /Published online: 7 December 2008
© Springer Science + Business Media, LLC 2008

Abstract

Steady-state, time-resolved fluorescence, Circular Dichroism and Molecular Mechanics techniques were used to study the complexation of 1-methyl naphthalenecarboxylate (1 MN) with the 2 -hydroxylpropyl- $\alpha-,-\beta$ - and γ cyclodextrins (HPCDs). The emission spectrum of 1 MN shows two bands whose intensity ratios (R) are sensitive to complexation. The stoichiometry, binding constants and thermodynamics parameters upon complexation were obtained from the variation of fluorescence intensity, R, and lifetime averages, $\langle\tau\rangle$, with [HPCD] and temperature. They were then compared with the ones obtained for the complexation of 1 MN with the non-substituted $\alpha-, \beta$ - and γ CDs. Like the $1 \mathrm{MN}: \mathrm{CD}$ complexes, the $1 \mathrm{MN}: H P C D$ ones showed 1:1 stoichiometries, but they resulted relatively more stable. Molecular Mechanics calculations in the presence of water allowed us to understand the structure of the complexes and the possible driving forces responsible for the complexation. Geometry agrees with the experimental stoichiometry and the signs of enthalpy and entropy changes. R for the complexes, quenching, fluorescence depolarization measurements and induced circular dichroism spectra also supported the proposed structures.

Keywords Cyclodextrins • Fluorescence • Circular dichroism - Molecular mechanics • 1-methyl naphthalenecarboxylate • 1-methylnaphthoate . 2-hydroxypropyl cyclodextrin

[^0]
Introduction

Cyclodextrins (CDs) are hollow structures formed by (α -1,4)-linked α-D-glucopyranose units which have a relatively non-polar cavity. CDs are capable of forming inclusion complexes with relatively small molecule guests or even polymers [1-4]. Non-covalently bonded guest (G) to CD binding processes are reversible in solution. Chemical substitution of any of the hydroxyl groups of their glucopyranose units modifies the thermodynamics of the G / CD formation and thus many of their properties and applications [1, 2]. The microviscosity and polarity of the medium surrounding G when it penetrates into the $C D$ cavity changes with respect to the free G in water, modifying the spectroscopic properties of chromophore-containing Gs. Among the different spectroscopies, the fluorescence techniques are some of the most used. Stoichiometries and binding constants of the complexes $(K), \Delta H^{0}$ and ΔS^{0} accompanying the processes as well as information about the structure of the complexes formed could be obtained from the change of the fluorescence emission intensity [513], the excimer formation [14-18], the fluorescence anisotropy [12, 19-22], the relative intensity of some bands of the emission spectra, [20-29] the fluorescence decay [5, $8,9,12,13,21,22,27-31]$, the energy transfer [32-34] and the fluorescence quenching [11-13, 20, 21, 28-30, 35] upon inclusion. These experimental aspects together with Molecular Modeling [36] (Molecular Mechanics [10, 20, 27-30, 37-43] and/or Molecular Dynamics [41-49]) also contribute to clarifying the complexation mechanism and driving forces involved in such processes.

Achiral chromophoric Gs may exhibit induced circular dichroism (ICD) upon inclusion into the CD cavity [50]. $I C D$ was used to determine the stability constants and stoichiometry for G:CD complexes. However, this technique
also provides information about the complex geometry, as the sign and strength of the $I C D$ signal is related to the location of the G and its interaction with the CD host [51].

We recently reported on the complexation of 1-methyl naphthalenecarboxylate (1 MN) with the three naturally occurring CDs [29]. Steady-state and time-resolved fluorescence techniques and Molecular Mechanics calculations were employed for this study. Emission spectra for 1 MN in the presence or in the absence of CDs exhibited two typical electronic emission bands whose intensity ratio R was sensitive to medium polarity. The analysis of the variation of R with [CD] and temperature revealed identical (1:1) stoichiometry for any of the CD complexes at any temperature. The formation constants at $25^{\circ} \mathrm{C}$ were around 40,360 and $110 \mathrm{M}^{-1}$ for 1 MN complexes with $\alpha-, \beta$ - and γ CDs. They were smaller than the ones forthe less bulky 2methyl naphthalenecarboxylate (2MN) [20, 25]. Linear van't Hoff plots reveal $\Delta H^{0}<0$ but they are also smaller than those obtained for 2 MN [20]. The entropy changes exhibit $\Delta S^{0}<0$ for $1 \mathrm{MN}: \alpha \mathrm{CD}$ and $1 \mathrm{MN}: \beta \mathrm{CD}$ and $\Delta S^{0}>0$ for $1 \mathrm{MN}: \gamma \mathrm{CD}$. In fact, in the latter case the process is entropically governed. Molecular Mechanics (MM) [29] indicates that 1 MN completely penetrates into the $\gamma \mathrm{CD}$ cavities, but only slightly penetrates into the cavity of the $\alpha \mathrm{CD}$. In agreement with entropy changes and the polarity surrounding 1 MN estimated from R at $[\mathrm{CD}] \rightarrow \infty, 1 \mathrm{MN}$ may also partially penetrate inside the β CD. Nevertheless, MM and other experimental parameters could also point towards a deeper penetration by the primary $\beta C D$ face. The van der Waals non-bonded hostguest interactions were the main forces responsible for complexation. Both the possible structures and the driving forces for the formation of the complexes could justify the values and signs of ΔH^{0} and ΔS^{0}.

In this paper a combination of fluorescence polarization, quenching, lifetimes and $I C D$ measurements as well as MM calculations were employed to study the complexation of 1 MN with 2 -hydroxyl- $\alpha-$, $-\beta$ - and γ cyclodextrins (HPCDs). Stoichiometries, binding constants and the thermodynamics parameters upon complexation were obtained. Experimental and theoretical data analysis was also used to interpret the changes of enthalpy and entropy upon complexation, which are related to the geometry and the driving forces responsible for the formation of such complexes. Results were compared with those obtained for 1 MN with CDs and 2 MN with $H P C D$.

Materials and methods

Reagents and solutions
Molar substitutions for all three $\alpha-, \beta-$ and $\gamma H P C D s$ (Aldrich) were 0.6 and the molecular weights ~ 1.180,
~ 1.400 and ~ 1.580 respectively. Karl-Fisher analysis reveals a 7.0, 7.1 and 6.6% water content by mass for $\alpha-, \beta-$ and $\gamma H P C D$ respectively. 1 MN was synthesized as described elsewhere [52]. 1MN/CD water solutions (milli-Q) were prepared by weight in their own quartz cells from a 1 MN filtered (Millipore, cellulose $0.45 \mu \mathrm{~m} \varnothing$) saturated ($[1 \mathrm{MN}] \approx 10^{-5}-10^{-6} \mathrm{M}$, constant in all experiments) aqueous solution. The content of the cells was stirred for 48 h before measuring. The $\alpha-, \beta$ - and $\gamma H P C D$ concentrations ranged from 0 through 13.6, 10.1 and 21.7 mM respectively. Diacetyl, $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2}$ (Aldrich, 98%) was used as the fluorescence quencher.

Apparatus

Steady-state fluorescence and time-resolved measurements were performed in a SLM 8100 AMINCO and a TCSPC FL900 Edinburgh Instruments spectrofluorometers. Characteristics and measurement conditions were described previously [22]. The thyratron-gated lamp was filled with H_{2}. Data acquisition was carried out by using 1,024 channels with a time window width of 200 ns and a total of 10,000 counts at the maximum. All measurements were performed in the temperature range from 5 to $45{ }^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C}$ intervals (Huber Ministat and Techne TE-8A). Decay intensity profiles were fitted to a sum of exponential decay functions by the iterative reconvolution method [53]. Right angle geometry and square cross section quartz 10 mm path cells were used.

Induced Circular Dichroism (ICD) spectra were obtained by using a JASCO J-715 spectropolarimeter. Recorded spectra were the average of two scans taken at the speed of $10 \mathrm{~nm} / \mathrm{min}$ with a time response of 8 s . Bandwidths were set at 2 nm and the sensitivity and resolution at 20 mdeg and 0.5 nm respectively. Measurements were performed at $25{ }^{\circ} \mathrm{C}$ in 10 mm optical path cells.

Fluorescence methods

The average lifetime of a multiple-exponential decay function was then defined as
$\langle\tau\rangle=\frac{\sum_{i=1}^{n} A_{i} \tau_{i}^{2}}{\sum_{i=1}^{n} A_{i} \tau_{i}}$
where A_{i} is the pre-exponential factor of the component with a lifetime τ_{i} of the multi-exponential function intensity decay.

The fractional contribution f_{i} of each component to the steady-state intensity at the wavelength of observation, is given by [54]
$f_{i}=\frac{A_{i} \tau_{i}}{\sum_{i=1} A_{i} \tau_{i}}=\frac{I_{i}}{\sum_{i=1} I_{i}}$
From a dilute solution of a pair of emitting species, i.e. free and complexed G, assuming that they do not interact during the excited-state lifetime, $\langle\tau\rangle$ is
$\langle\tau\rangle=f_{1} \tau_{1}+f_{2} \tau_{2}$
The fluorescence anisotropy r is defined as [55]:
$r=\left(I_{V V}-G I_{V H}\right) /\left(I_{V V}+2 G I_{V H}\right)$
where I_{xy} is the intensity of the emission that is measured when the excitation polarizer is in position x (V for vertical, H for horizontal), the emission polarizer is in position y , and the G factor ($=I_{\mathrm{HV}} / I_{\mathrm{HH}}$) corrects for any depolarization produced by the optical system.

For these kinds of systems and using the quenching-sphere-action model [56] the Stern-Volmer equations of fluorescence intensity (\mathbb{F}, measured as the area under the emission spectrum) or $\langle\tau\rangle$ can be written as,

$$
\begin{equation*}
\frac{\langle\tau\rangle}{\langle\tau\rangle_{q=0}}=\frac{t_{f}}{\left(1+K_{S V, f}[Q]\right)}+\frac{t_{c}}{\left(1+K_{S V, c}[Q]\right)} \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\mathbb{F}}{\mathbb{F}_{q=0}}= & \frac{f_{f}}{\left\{1+K_{S V, f}[Q]\right\} \exp \left(V_{f} N[Q] / 1000\right)} \\
& +\frac{f_{c}}{\left\{1+K_{S V, c}[Q]\right\} \exp \left(V_{c} N[Q] / 1000\right)} \tag{6}
\end{align*}
$$

where the t_{f} and t_{c} fractions are the contributions to $\langle\tau\rangle_{q=o}$ due to the free and complexed guest in the absence of the quencher; f_{f} and f_{c} are the fraction of total fluorescence, $\langle\tau\rangle_{q=o}$ due to both species. $K_{S V, f}, V_{f}, K_{S V, c}$ and V_{c} are the Stern-Volmer constants and volume of the sphere action for the free guest and complex. These parameters were obtained for each system as described elsewhere [29, 57].

Binding constants from fluorescence measurements
For a 1:n guest:host complex ($\mathrm{G}: H P \mathrm{CD}_{n}$), whose global equilibrium can be written as
$1 M N+n H P C D \rightleftharpoons 1 M N: H P C D_{n}$
by assuming two fluorescent species, the free and the complexed G , at the equilibrium, the binding constants can
be determined from the non-linear dependence of several parameters derived from fluorescence steady-state or timeresolved fluorescence techniques with [HPCD] according to the following expressions:

$$
\begin{equation*}
\text { (a) } \frac{\mathbb{F}}{\mathbb{F}_{0}}=\frac{1+\left(\mathbb{F}_{\infty} / \mathbb{F}_{0}\right) K[H P C D]_{0}^{n}}{1+K[H P C D]_{0}^{n}} \tag{8}
\end{equation*}
$$

where \mathbb{F} represents the fluorescence intensity (\mathbb{F}). Subscripts ∞ and 0 correspond to the \mathbb{F} values for $[H P C D]=0$ and extrapolated at $[H P C D] \rightarrow \infty$.
(b) $\quad R=\frac{R_{0}+R_{\infty} \Phi K[H P C D]_{0}^{n}}{1+\Phi K[H P C D]_{0}^{n}}$
where R is the ratio of intensities of two electronic bands $R=I_{\lambda_{2}} / I_{\lambda_{1}}$, by assuming that the emission spectra show bands centered at λ_{1} and λ_{2}. The parameter $\Phi=\mathrm{I}_{\infty, \lambda_{1}} / \mathrm{I}_{0, \lambda_{1}}$ can be estimated from the $\mathrm{I}\left(\lambda_{1}\right)$ values at $[H P C D]=0$ and extrapolated at $[H P C D] \rightarrow \infty . R_{\infty}$ and R_{0} are for the free and complexed G [29, 57].
(c) $\langle\tau\rangle=\frac{\tau_{0}+\tau_{\infty} \Phi K[H P C D]_{0}^{n}}{1+\Phi K[H P C D]_{0}^{n}}$
where $\langle\tau\rangle$ is derived from Eq. 3 and by the analysis of the fluorescence decay profiles of fluorescence intensity. τ_{0} and τ_{∞} are the fluorescence lifetimes for the free and complexed G.
(d) $r=\frac{r_{0}+r_{\infty} \Phi K[H P C D]_{0}^{n}}{1+\Phi K[H P C D]_{0}^{n}}$

This equation was obtained under the assumption that the total anisotropy is the sum of contributions due to uncomplexed and complexed guests. If lifetime and anisotropy data are collected at λ_{1}, the same parameter Φ appears in Eqs. 9, 10 and 11. If they are collected at λ_{2} it is not the same. There is, however, a simple relationship between them, $\Phi\left(\lambda_{1}\right)=\frac{R_{0}}{R_{\infty}} \Phi\left(\lambda_{2}\right)[29,57]$.

It is useful to obtain a linear equation from the non-linear Eqs. 8 to 11 as:
$\frac{[H P C D]_{0}^{n}}{\left(Y_{0}-Y\right)}=\frac{1}{K \Phi\left(Y_{0}-Y_{\infty}\right)}+\frac{[H P C D]_{0}^{n}}{Y_{0}-Y_{\infty}}$
where Y represents any of the $\mathbb{F}, R,\langle\tau\rangle$ or r parameters.
Molecular mechanics

The $1: 1$ stoichiometry complexes studied were between the 2-hydroxypropyl- α-, - β - and γ cyclodextrins fully substituted at C 2 of the glucopyranose unit $(\mathrm{MS}=1.0)$ and the 1 MN guest. MM calculations were mainly performed in the presence of water by using Sybyl 6.9 from Tripos Associates, St. Louis, Missouri [58-60]. MM calculation
details and complexation procedures were identical to those reported previously [26-29].

Binding energy, $\mathrm{E}_{\text {binding }}$ (or any non-bonded energy interaction) between 1 MN and $H P C D$ is obtained as the difference between the potential energy of the system and the sum of the potential energies of the isolated 1 MN and $H P C D$. Strain energy is the sum of bond stretching, bond angle bending and torsion energy terms.

For complexation processes, each HPCD host was placed so that the center of mass of glycosidic oxygens (o) was located at the origin of a coordinate system with the y axis oriented along the main $C D$ axis and the z axis passing trough a glycosidic oxygen. The oo' projection on the y coordinate (o^{\prime} corresponds to the center of mass of the guest naphthalene ring), the angle between the yz and the naphthalene planes (θ) and the oo'C9 angle (δ) were used to define the relative guest-host orientation. As reported elsewhere [29] four guest-host approaching orientations named VP, VnP, HP and $\mathrm{H} n P$ were considered. Critical analysis of $\mathrm{E}_{\text {binding }}$ for the structures, obtained by scanning δ, θ and y parameters in the vacuo, provides better orientation for the approaching. With the fixed δ and θ the guest was forced to approach $y=20(\AA)$ up to $-20(\AA)$ at $0.5 \AA$ steps along the y coordinate. Each structure generated was solvated (PBC), optimized and analyzed.

Results and discussion

Absorption spectra for 1 MN and $1 \mathrm{MN} / H P \mathrm{CD}$ solutions in the 250-360 range show a main band centered at 294 nm and a shoulder at around 320 nm . No isosbestic points are observed upon HPCD addition but intensity increases. Excitation spectra in the absence of $H P C D$, as well as in presence of it, show a band centered at approximately 305 nm and a shoulder at 320 nm . Intensity decreases and slight red shifts are observed upon increasing [HPCD].

Figure 1 depicts the emission spectra for 1 MN and $1 \mathrm{MN} /$ $H P C D$ water solutions upon excitation of 294 nm at $25^{\circ} \mathrm{C}$. All spectra exhibit a large band placed in the $385-390 \mathrm{~nm}$ range and a shoulder centered at 365 nm , which are typical for the 1 MN monomer emission. A decreasing in the fluorescence intensity takes place upon addition of $H P C D$, the amount of which depends on the host type and temperature. They also show isoemisive points which are placed close to the high energy shoulder: at approx. 355 nm for $1 \mathrm{MN} / \alpha H P C D$ and at 363 nm for $1 \mathrm{MN} / \beta H P C D$ and $1 \mathrm{MN} / \gamma H P \mathrm{CD}$ solutions. One of the main characteristics, however, is the decreasing in the intensity of the low energy band relative to the shoulder placed at $\sim 365 \mathrm{~nm}$ ($R=I_{\lambda=385 \mathrm{~nm}} / I_{\lambda=365 \mathrm{~nm}}$) upon HPCD addition.

Figure 2, upper and lower panels, depicts the relative variation in fluorescence intensity $\left(\mathbb{F} / \mathbb{F}_{0}\right)$ and the parameter

Fig. 1 Uncorrected emission spectra of 1 MN and $1 \mathrm{MN} / H P C D(\alpha-$, β - or $\gamma H P C D$) aerated water solutions at different [$H P C D$] at $25^{\circ} \mathrm{C}$ upon $\lambda_{\text {exc }}=294 \mathrm{~nm}$. (top) $[\alpha H P C D]=0,0.56,2.2,3.9,5.5,7.1,8.7$, 10.4 and 12.2 mM ; (middle) $[\beta H P C D]=0 ; 0.37,1.5,2.7,4.1,5.2,6.6$, $7.8,8.9$ and 10.1 mM . (bottom); $[\gamma H P C D]=0,0.78,2.1,3.3,5.5,9.8$, 14.2, 15.5, 18.4 and 21.7 mM . Notice isosbestic points

Fig. 2 (left) Variation of the $\mathbb{F} / \mathbb{F}_{0}$ ratios and R parameter $v s$. [$\beta \mathrm{HPCD}$] for $1 \mathrm{MN} / \beta H P C D$ water solutions at different temperatures: $5{ }^{\circ} \mathrm{C}(\mathrm{\square}) ; 15^{\circ} \mathrm{C}(\mathrm{O})$; $25^{\circ} \mathrm{C}(\Delta) ; 35^{\circ} \mathrm{C}(\nabla)$; and $45^{\circ} \mathrm{C}$ (\diamond). (right) Linear representations of \mathbb{F} and R parameters according to Eq. (12). Dashed lines were obtained by adjusting the experimental data to the proper stoichiometry by using non-linear (8) and (9) and linear (12) equations

R with [HPCD] and temperature respectively for the $1 \mathrm{MN} /$ $\beta H P C D$ system. Other systems exhibit a similar, nevertheless quantitatively different, trend. The largest variation of R takes place for $1 \mathrm{MN} / \beta H P C D$. The decreasing in R is associated with the decreasing in polarity of the medium surrounding the guest during complexation [29].

Fluorescence intensity decay measurements at 385 nm upon excitation of 294 nm for isolated 1 MN and $1 \mathrm{MN} /$ $H P C D$ water solutions were obtained from $5{ }^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ at $10{ }^{\circ} \mathrm{C}$ intervals. The intensity profile for the isolated 1 MN is mono-exponential (lifetimes from $\sim 7.8 \mathrm{~ns}$ at $5^{\circ} \mathrm{C}$ to ~ 7.2 ns at $45^{\circ} \mathrm{C}$) [29]. However, for $1 \mathrm{MN} / H P \mathrm{CD}$ solutions these decay profiles, some of which are depicted in Fig. 3, are bi-

Fig. 3 Intensity decay profiles for $1 \mathrm{MN} / \beta H P C D$ water solutions at different $[\beta H P C D]$ at $25^{\circ} \mathrm{C}$ upon excitation and emission wavelength of 294 and 385 nm respectively

Fig. 4 (top) Variation of the weighted average lifetimes, $\langle\tau\rangle v s$. [HPCD] for $1 \mathrm{MN} / \beta H P C D$ water solutions at different temperatures: $5^{\circ} \mathrm{C}(\square) ; 15{ }^{\circ} \mathrm{C}(\circ) ; 25^{\circ} \mathrm{C}(\triangle) ; 35^{\circ} \mathrm{C}(\nabla)$; and $45^{\circ} \mathrm{C}(\diamond)$. (bottom) Idem for all $1 \mathrm{MN} / H P C D$ systems: $1 \mathrm{MN} / \alpha H P C D(■), 1 \mathrm{MN} / \beta H P C D$ (\bullet) and $1 \mathrm{MN} / \gamma H P C D(\boldsymbol{\Delta})$ at $25^{\circ} \mathrm{C}$. Dashed lines were obtained by adjusting the experimental data to the proper stoichiometry by using non-linear Eqs. (10) and (11)
exponential. The fast component, whose contribution increases with $[H P C D]$, is attributed to the complex. The slow one, which matches the one for the isolated 1 MN very well, is attributed to the free guest.

Figure 4 depicts the decrease of $\langle\tau\rangle$ with [$\beta H P C D$] at different temperatures and for the three $1 \mathrm{MN} / H P C D$ systems at $25^{\circ} \mathrm{C}$. The largest decrease in $\langle\tau\rangle$ with [HPCD] is obtained for $1 \mathrm{MN} / \beta H P C D$ as occurred for $1 \mathrm{MN} / \beta \mathrm{CD}$ [29]. This decrease, which was also observed when 2 MN complexes with $\beta H P C D$ [21] and for the complexation of 1 MN with natural un-modified CDs [29], is a consequence of the faster lifetime component for the complexed form as compared to the free one.

The binding constants (K) obtained by the non-linear (Eqs. 8-10) and linear adjustments (Eq. 11) by using different steady-state and time resolved fluorescence techniques are collected in Tables 1 and 2. Examples of these adjustments are also depicted in Fig. 2. The K averages at
$25{ }^{\circ} \mathrm{C}$ were $\sim 70, \sim 590$ and $\sim 155 \mathrm{M}^{-1}$ (steady-state, from \mathbb{F} or R) and $\sim 115, \sim 565$ and $\sim 145 \mathrm{M}^{-1}$ (from lifetime measurements) for 1 MN complexed with $\alpha-, \beta-$ and $\gamma H P C D$ respectively. Broadly speaking, they were lower when compared to the ones for the $2 \mathrm{MN} / H P C D$ [21] complexes and for 2,3-naphthalenedicarboxylate (23DMN) with the same HPCDs [61], but always larger than when 1 MN complexes with the natural un-substituted CDs [21, 61]. The values of $\Phi\left(\lambda_{1}\right)$ are close to 1 , i.e. $\mathrm{I}_{\infty}\left(\lambda_{1}\right) \approx \mathrm{I}_{0}\left(\lambda_{1}\right) . \Phi\left(\lambda_{2}\right)$ values stay around $0.5-0.7$ (at $\lambda_{2}=$ $385 \mathrm{~nm} \mathrm{I}_{\infty}\left(\lambda_{2}\right)<\mathrm{I}_{0}\left(\lambda_{2}\right)$). They do not show any great change with temperature.

The Job's Plots $[62,63]$ depicted in Fig. 5 denote a 1:1 stoichiometry for all the $1 \mathrm{MN}: H P C D$ complexes.

As an example, Fig. 6 depicts linear van't Hoff plots obtained from the average of the K values from the steadystate measurements collected in Table 1. Table 3 shows ΔH^{0} and ΔS^{0} for $1 \mathrm{MN}: H P C D$ complexes obtained from

Table $1 \mathbb{F}_{\infty} / \mathbb{F}_{0}, \quad R_{\infty}, \Phi\left(\lambda_{1}=365 \mathrm{~nm}\right)$ parameters and binding constants K, obtained from steady-state fluorescence measurements at five temperatures for three systems studied

	Fluorescente Intensity (\mathbb{F})			Intensity ratios, (R)		
	T (${ }^{\circ} \mathrm{C}$)	$\mathbb{F}_{\infty} / \mathbb{F}_{0}$	$K\left(\mathrm{M}^{-1}\right)$	$\Phi\left(\lambda_{1}\right)$	R_{∞}	$K\left(\mathrm{M}^{-1}\right)$
$1 \mathrm{MN} / \alpha H C \mathrm{D}$	5	0.30 ± 0.05	106 ± 15	1.00	1.12 ± 0.04	179 ± 21
			163 ± 20		$\mathbf{1 . 2 6} \pm \mathbf{0 . 0 7}$	110 ± 21
	15	0.31 ± 0.07	98 ± 18	1.06	1.07 ± 0.03	116 ± 9
			122 ± 8		1.22 ± 0.06	76 ± 11
	25	0.25 ± 0.10	76 ± 18	1.10	1.04 ± 0.06	78 ± 9
			90 ± 6		1.26 ± 0.09	61 ± 14
	35	0.25 ± 0.09	67 ± 13	1.09	1.21 ± 0.04	112 ± 15
			$\mathbf{9 9} \pm 11$		$\mathbf{1 . 3 5} \pm \mathbf{0 . 0 4}$	85 ± 10
	45	0.05 ± 0.13	33 ± 6	1.09	1.12 ± 0.05	59 ± 7
			64 ± 8		$\mathbf{1 . 2 7} \pm 0.07$	45 ± 8
$1 \mathrm{MN} / \beta H P \mathrm{CD}$	5	0.53 ± 0.01	710 ± 46	1.07	0.981 ± 0.005	658 ± 16
			710 ± 65		$\mathbf{0 . 9 7 8} \pm 0.006$	$\mathbf{6 4 5} \pm 20$
	15	0.51 ± 0.01	678 ± 36	1.06	0.976 ± 0.006	607 ± 15
			$\mathbf{6 7 5} \pm 43$		$0.978 \pm \mathbf{0 . 0 0 5}$	611 ± 20
	25	0.52 ± 0.01	603 ± 35	1.04	0.985 ± 0.005	570 ± 13
			$\mathbf{5 9 3} \pm \mathbf{3 9}$		$\mathbf{0 . 9 8 8} \pm 0.005$	$\mathbf{5 8 1} \pm 14$
	35	0.50 ± 0.01	492 ± 37	1.01	0.991 ± 0.003	508 ± 7
			478 ± 41		$\mathbf{0 . 9 9 1} \pm 0.003$	508 ± 9
	45	0.57 ± 0.01	457 ± 50		0.984 ± 0.011	400 ± 16
			$\mathbf{5 0 4} \pm 53$	0.99	$\mathbf{0 . 9 8 0} \pm \mathbf{0 . 0 0 9}$	393 ± 15
$1 \mathrm{MN} / \gamma H P \mathrm{CD}$	5	0.60 ± 0.02	162 ± 23	1.12	1.20 ± 0.02	127 ± 10
			148 ± 13		1.21 ± 0.01	136 ± 5
	15	0.56 ± 0.02	116 ± 11	1.06	1.20 ± 0.02	152 ± 11
			$\mathbf{1 1 8} \pm \mathbf{1 2}$		$\mathbf{1 . 2 0} \pm \mathbf{0 . 0 2}$	$\mathbf{1 5 3} \pm 12$
	25	0.591 ± 0.013	151 ± 14	1.04	1.19 ± 0.01	167 ± 10
			148 ± 13		$\mathbf{1 . 1 8} \pm \mathbf{0 . 0 1}$	159 ± 7
	35	0.569 ± 0.013	145 ± 12	1.03	1.16 ± 0.03	145 ± 19
			143 ± 13		$\mathbf{1 . 1 7} \pm \mathbf{0 . 0 1}$	151 ± 14
	45	0.62 ± 0.04	79 ± 17	1.01	1.19 ± 0.01	169 ± 7
			74 ± 8		1.20 ± 0.01	174 ± 8

[^1]Table $2\langle\tau\rangle_{\infty}, \Phi\left(\lambda_{2}=385 \mathrm{~nm}\right)$ and binding constants K, obtained from lifetime fluorescence measurements at five temperatures for three systems studied

	Lifetime Average ($\langle\tau\rangle$)			
	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\Phi_{385} \mathrm{~nm}$	$\langle\tau\rangle_{\infty}$ (ns)	$K\left(\mathrm{M}^{-1}\right)$
$1 \mathrm{MN} / \alpha H P \mathrm{CD}$	5	0.58	5.24 ± 0.07	153 ± 8
			5.1 ± 0.2	$\mathbf{1 3 5} \pm 16$
	15	0.59	5.12 ± 0.04	127 ± 3
			5.07 ± 0.05	123 ± 3
	25	0.61	4.99 ± 0.08	104 ± 5
			$\mathbf{5 . 2 4} \pm \mathbf{0 . 1 7}$	123 ± 14
	35	0.63	5.06 ± 0.19	102 ± 13
			$\mathbf{5 . 2 7} \pm 0.17$	119 ± 15
	45	0.68	5.14 ± 0.11	88 ± 8
			$\mathbf{5 . 2 0} \pm 0.15$	92 ± 10
$1 \mathrm{MN} / \beta$ HPCD	5	0.54	4.69 ± 0.03	672 ± 20
			4.70 ± 0.03	$\mathbf{6 8 1} \pm 19$
	15	0.54	4.51 ± 0.04	613 ± 21
			4.52 ± 0.03	$\mathbf{6 2 0} \pm 21$
	25	0.54	4.42 ± 0.04	566 ± 23
			4.48 ± 0.04	$\mathbf{5 6 3} \pm \mathbf{2 2}$
	35	0.54	4.31 ± 0.02	480 ± 8
			4.30 ± 0.02	563 ± 9
	45	0.54	4.20 ± 0.05	368 ± 16
			4.21 ± 0.03	$\mathbf{3 7 4} \pm \mathbf{1 1}$
$1 \mathrm{MN} / \gamma H P \mathrm{CD}$	5	0.69	5.84 ± 0.07	157 ± 13
			$\mathbf{5 . 8 8} \pm \mathbf{0 . 0 7}$	167 ± 14
	15	0.66	5.43 ± 0.06	144 ± 8
			$\mathbf{5 . 4 6} \pm 0.05$	149 ± 8
	25	0.65	5.24 ± 0.05	151 ± 8
			$\mathbf{5 . 1 6} \pm 0.09$	138 ± 11
	35	0.65	4.88 ± 0.11	128 ± 12
			4.95 ± 0.10	138 ± 12
	45	0.66	4.95 ± 0.03	147 ± 5
			4.91 ± 0.04	140 ± 6

K values were obtained by using the non-linear (Eq. 10) and (bold) the linear (Eq. 12) adjustments.
steady-state and lifetime measurements. This table also shows the thermodynamics parameters for $2 \mathrm{MN}: H P C D$ [21] and $1 \mathrm{MN}: \mathrm{CD}$ [29] complexes that were obtained from steady-state measurements. ΔH^{0} and ΔS^{0} for $1 \mathrm{MN}: H P C D$ complexes exhibit values obtained from steady-state and time-resolved (less reliable due to intrinsic reasons) measurements which are within the standard deviation. The exception, as with $1 \mathrm{MN} / \alpha \mathrm{CD}$, is for the 1 MN complex with the smallest size $H P C D$.

Complexations of 1 MN with α - and $\beta H P C D$ have $\Delta H^{0}<0$. The complex with $\gamma H P C D$, however, shows $\Delta H^{0} \approx 0$. As with most of the cases [20, 21, 35, 43], the decreasing in the CD macro-ring size means a more favorable ΔH^{0}. Complexation processes of 1 MN with $H P C D$ s are also accompanied by less favorable enthalpy changes than the ones obtained with their natural counterparts [29]. Something similar occurred when 2 MN was complexed with HPCDs

Fig. 5 Job's plots for the $1 \mathrm{MN} / \alpha H P C D(\square), 1 \mathrm{MN} / \beta H P C D$ ($)$ and $1 \mathrm{MN} / \gamma H P C D(\Delta)$ systems. $\Delta \mathbb{F}=\mathbb{F}_{0}-\mathbb{F}$ is the difference of fluorescence intensity in the absence and in the presence of $H P C D$ and q is defined as $[H P C D]_{t} /\left([G]_{t}+[H P C D]_{t}\right)$, where $[H P C D]_{t}$ and $[\mathrm{G}]_{\mathrm{t}}$ are the $H P C D C D$ and G concentrations
[21]. The increase in the cavity size (width and/or length) [20, 21, 25, 43] generally makes van der Waals attractive interactions decrease, and ΔH^{0} is then less favorable or slightly unfavorable. Thus ΔH^{0} values and trends would agree with the possibility that van der Waals attractive interactions may be responsible for the formation of $1 \mathrm{MN} / H P C D$ complexes.

When comparing the results from steady-state measurements, ΔS^{0} signs upon $1 \mathrm{MN} / H P C D s$ formation match those obtained for $2 \mathrm{MN} / H P C D$ systems [21] and partially the ones obtained for complexation of 1 MN with their natural counterparts [29]. $\Delta S^{0}<0$ if 1 MN complexes with

Fig. 6 Van't Hoff plots of RLn $K v s . \mathrm{T}^{-1}$ for the formation of 1 MN complexes with $\alpha H P C D$ ($), \beta H P C D$ (०) and $\gamma H P C D(\Delta)$ from the average of binding constants obtained by \mathbb{F} and R steady-state measurements

Table 3 Values of the enthalpy $\left(\Delta H^{0}\right)$ and entropy $\left(\Delta S^{0}\right)$ changes associated to the complexation processes of 1 MN with $\alpha-, \beta-$ and $\gamma H P C D s$ from the average of the values of K obtained by steady-state (ss) and time-resolved (tr) fluorescence measurements

complex	$\Delta H^{0}{ }_{s s}\left(\mathrm{kJmol}^{-1}\right)$	$\Delta S_{s s}^{0}\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$	$\Delta H^{0}{ }_{r r}\left(\mathrm{kJmol}^{-1}\right)$	$\Delta S^{0}{ }_{t r}\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
1MN: $\alpha H P C D$	-16 ± 4	-17 ± 14	-7 ± 2	$+17 \pm 7$
$2 \mathrm{MN}: \alpha H P \mathrm{CD}$	-25 ± 1	-28 ± 4		
$1 \mathrm{MN}: \alpha \mathrm{CD}$	-15 ± 7	-21 ± 25		
1MN: $\beta \boldsymbol{H P C D}$	-7 ± 2	$+30 \pm 7$	-10 ± 1	$+17 \pm 4$
$2 \mathrm{MN}: \beta H P \mathrm{CD}$	-8 ± 3	$(+40 \pm 7)$		
$1 \mathrm{MN}: \beta \mathrm{CD}$	-18 ± 5	-15 ± 11		
1MN: $\boldsymbol{\gamma} \boldsymbol{H P C D}$	$+\mathbf{0} \pm 1$	+42 ± 4	-1 ± 1	$+38 \pm 2$
$2 \mathrm{MN}: \gamma H P \mathrm{CD}$	$+6 \pm 3$	$+63 \pm 11$		
$1 \mathrm{MN}: \gamma \mathrm{CD}$	-3 ± 2	$+25 \pm 7$		

Are also enclosed the values for $2 \mathrm{MN}: \alpha H P \mathrm{CD}$ [21] and $1 \mathrm{MN} / \mathrm{CD}$ [29]
$\alpha H P C D$ and $\Delta S^{0}>0$ when it does with β - and $\gamma H P C D$. The entropic terms accompanying the complexation are more favorable ($\beta-$ and $\gamma H P C D s$) or less unfavorable $(\alpha H P C D s)$ than with their natural counterparts. Something similar was reported when comparing ΔS^{0} for 2 MN complexation with HPCD and CDs [21]. The entropy sign upon complexation is usually the result of two opposite terms: a positive one, which corresponds to the loss of the ordered water surrounding the guest or included inside the CD host, and a negative one due to the decrease in the degrees of freedom. In general, an increase in the macro-ring size is accompanied by a more favorable or less unfavorable entropic term. Thus $\Delta S^{0}<0$ for $1 \mathrm{MN} / \alpha H P C D$ is typical of guests whose penetration into the relatively small cavity is partial and whose movement is also fairly hindered. The $\Delta S^{0}>0$ for 1 MN with β - and $\gamma H P C D$ may indicate that the 1 MN penetrates into the β - and $\gamma \mathrm{CD}$ cavities.

The variation of the fluorescence anisotropy (r) with [$\beta H P \mathrm{CD}$] at different temperatures is represented in the left
panel of Fig. 7 for the $1 \mathrm{MN} / \beta H P C D$ system. The right panel shows the change in r for all the systems at a single temperature. The curves are the result of the adjustments of the data to Eq. (11). r increases with [HPCD] and it decreases with temperature. This can be attributed to the larger fraction of 1 MN complexed and to the decrease in the viscosity solvent and/or to the decreases in the complexed fraction as the processes are enthalpically favored. r_{∞} for the complexed forms varies as: $r_{\infty, 1 \mathrm{MN}: \alpha H P C D}(=0.039)>r_{\infty, 1 \mathrm{MN}}$: $\beta H P C D(=0.034)>r_{\infty}, 1 \mathrm{MN}: \gamma H P C D(=0.029)>\quad r_{0,1 \mathrm{MN}} . \quad \mathrm{The}$ largest value obtained for $1 \mathrm{MN}: \alpha H P C D$ would be in agreement with the formation of a rigid complex, where 1 MN , which is partially inside the cavity, strongly interacts with $\alpha H P C D$. The decrease in r with the host size may indicate, in agreement with the ΔS^{0} sign, a deeper penetration of 1 MN . Although the trend in r is different with un-substituted CDs $\left(r_{\infty, 1 \mathrm{MN}: \gamma \mathrm{CD}}>r_{\infty, 1 \mathrm{MN}: \alpha \mathrm{CD}}>r_{\infty}\right.$, $1 \mathrm{MN}: \beta \mathrm{CD} \gg r_{0,1 \mathrm{MN}}$) similar conclusions were drawn with regard to the $1 \mathrm{MN} / \alpha \mathrm{CD}$ complex [29].

Fig. 8 Stern-Volmer representations obtained from steady-state (left) and time-resolved (right) fluorescence measurements for 1 MN (\square), $1 \mathrm{MN} / \alpha H P C D(\circ), 1 \mathrm{MN} / \beta H P C D(\triangle)$ and $1 \mathrm{MN} / \gamma H P C D(\nabla)$ systems at $25^{\circ} \mathrm{C}$. Quencher was 2,3-butanedione (diacetyl)

Figure 8 depicts Stern-Volmer plots from $\langle\tau\rangle$ (right) and \mathbb{F} (left) measurements on free 1 MN and $1 \mathrm{MN} / H P C D$ solutions (fraction of the complexed guest fixed at 0.75 for all systems) by using diacetyl $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2}$ as a quencher. Several aspects from the experiments must be pointed out: (a) R hardly changes upon quencher addition; (b) $\langle\tau\rangle_{q=0} /\langle\tau\rangle$ varies linearly with [Q] with the largest K_{SV} for 1 MN in the absence of CD ; (c) $\mathbb{F}_{q=0} / \mathbb{F}$ plots deviate from the linearity. The parameters collected in Table 4 were obtained by fitting the experimental steady-state and timeresolved data to the quenching-sphere-action model following the procedure described elsewhere [29, 56, 57]. $K_{S V, f}$ for free 1 MN is $2-3$ times larger than $K_{S V, c}$, following $\mathrm{K}_{\mathrm{SV}, 1 \mathrm{MN}}$ $>\mathrm{K}_{\mathrm{SV}, 1 \mathrm{MN}: \alpha \mathrm{HPCD}}>\mathrm{K}_{\mathrm{SV}, 1 \mathrm{MN}: \gamma \mathrm{HPCD}}>\mathrm{K}_{\mathrm{SV}, 1 \mathrm{MN}: \beta \mathrm{HPCD}}$. The bimolecular quenching constants $\left(k_{q, c}\right)$ follow a similar trend. These results may indicate that the free 1 MN is easier to access than when it is complexed, but also, in agreement with r_{∞} values and ΔS^{0} signs, that the accessibility to 1 MN is slightly larger for $1 \mathrm{MN}: ~ \alpha H P C D$ than for the other two complexes. The comparison of the results of $K_{S V, c}$ and $k_{q, c}$ with those obtained for 1 MN complexation with the unsubstituted CD partners [29] reveals a slightly better penetration of the 1 MN inside $H P \mathrm{CD}$ cavities.

The dependence of the R and τ parameters for 1 MN on the polarity (ε) and microviscosity (η) were also obtained by performing steady-state and time-resolved measurements of 1 MN in different ε and η solvents [29]. Emission spectra exhibited similar features as in water, even though intensity decays were generally bi-exponential [29]. R increased with ε according to $R=0.68+1.1 \times 10^{-3} \in$ $+1.8 \times 10^{-4} \in^{2}$ at $25^{\circ} \mathrm{C}$. Something similar occurred with $\langle\tau\rangle$ which increased with ε for $\varepsilon>30$, but it stayed almost constant for $\varepsilon<30$. Neither $\langle\tau\rangle$ nor R showed any clear dependence on η. The values of $R_{\infty}(1.15,0.99$ and 1.19) and $\tau_{\infty}(5.1,4.5$ and 5.5 ns$)$ for $\alpha-, \beta-$ and $\gamma H P C D s$ at $25{ }^{\circ} \mathrm{C}$ can provide information about the 1 MN guest location in the complex. With R_{∞} and the above $R(\varepsilon)$ equation, values of $\varepsilon \approx 47 \pm 5,39 \pm 1$ and 49 ± 1 respectively were estimated for the medium surrounding the 1 MN guest in the complexes with $\alpha-, \beta$ - and $\gamma H P C D s$. These values were slightly smaller than the ones obtained for the 2 MN probe with the $H P C D s(\varepsilon \approx 51,44$, and 56 respectively) [21]. MM calculations on the latter systems revealed that

2 MN deeply penetrates into the three HPCDs. Then ε values provided polarities for the $H P C D$ inner cavities which were quite similar for the three $H P C D s$ [43]. However, 1 MN was located in a slightly more polar environment when it was complexed with $\alpha-, \beta$ - and $\gamma \mathrm{CDs}$ $(\varepsilon \approx 57,59,61$ respectively). The bulkier characteristics of 1 MN , as compared to 2 MN , makes it somewhat more exposed to the water polar solvent when it complexes with the α - and $\beta \mathrm{CDs}$, whose inner cavity was estimated to be less polar (ε of ~ 10 and ~ 49 respectively) [20, 25].

R and τ changes with ε may also explain the monotonic decrease in R and $\langle\tau\rangle$ with [HPCD]. This may be due to the decrease in the medium polarity surrounding 1 MN when it migrates from an aqueous medium $(\varepsilon \sim 78)$ to one of $\varepsilon \approx 40-50$.

Induced circular dichroism (ICD) was measured for the ${ }^{1} \mathrm{~L}_{\mathrm{a}}$ (and ${ }^{1} \mathrm{~L}_{\mathrm{b}}$) absorption band placed at $294 \mathrm{~nm}(320 \mathrm{~nm})$ [64], whose transition moment nearly follows the direction of the short naphthalene axis [65, 66]. Figure 9 depicts $I C D$ spectra at $25^{\circ} \mathrm{C}$ for isolated 1 MN and $1 \mathrm{MN} / H P C D$ water solutions for the ${ }^{1} \mathrm{~L}_{\mathrm{a}}$ naphthalene absorption band which overlaps with the ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ one. All $1 \mathrm{MN} / H P C D$ solutions were prepared for a fraction of approximately 0.7 of the complexed guest. Figure 9 also shows the absorption spectrum for 1 MN . The $I C D$ spectra for any of the 1 MN with $\alpha-, \beta-$ and $\gamma H P C D$ water solutions exhibit positive bands. The spectrum is substantially more intense for $1 \mathrm{MN} /$ $\gamma H P C D$ and less for $1 \mathrm{MN} / \beta H P C D$. A weaker one is obtained for the $1 \mathrm{MN} / \alpha H P C D$ water solution and the intensity is close to the background instrument noise for 1 MN in the absence of $H P C D$ s. The $I C D$ spectrum positive sign may agree with a 1 MN guest approaching the HPCDs (VP or $\mathrm{V} n \mathrm{P}$), where the short naphthalene axis (direction of the ${ }^{1} \mathrm{~L}_{\mathrm{a}}$ transition moment) is nearly parallel to the n-fold rotation HPCD axis. The high intensity for the $1 \mathrm{MN} /$ $\gamma H P C D$ solution suggests a better fit and/or deeper penetration of 1 MN inside the $\gamma H P \mathrm{CD}$, whose movement could probably be quite hindered. The weak intensity for $1 \mathrm{MN} / \alpha H P \mathrm{CD}$, in agreement with $k_{q, c}, r_{\infty}$ and ΔS^{0} values, is derived from the poor 1 MN penetration into the $\alpha H P C D$.

In addition, $I C D$ spectra for 1 MN with natural CDs were also performed at the same experimental conditions. Spectra for $1 \mathrm{MN} / \beta \mathrm{CD}$ and $1 \mathrm{MN} / \gamma \mathrm{CD}$ water solutions,

Table 4 Parameters of the modified Stern-Volmer equation for quenching of free 1 MN and $1 \mathrm{MN} / \mathrm{HPCD}$ complexes at $25^{\circ} \mathrm{C}$

system	$\tau_{c, \mathrm{q}=0}\left(\tau_{f, \mathrm{q}=0}\right), \mathrm{ns}$	$\left\langle\tau>_{\mathrm{q}=0}, \mathrm{~ns}\right.$	$K_{S V, c}\left(K_{S V, f}\right), \mathrm{M}^{-1}$	$k_{q, c} \times 10^{-9}\left(k_{q, f} \times 10^{-9}\right), \mathrm{M}^{-1} \mathrm{~s}^{-1}$
1 MN	(7.6 ± 0.0)	7.6	(16.8 ± 0.4)	(2.2 ± 0.1)
$1 \mathrm{MN} / \alpha H P C D$	5.0 ± 0.1	5.7	7.0 ± 0.1	1.4 ± 0.0
$1 \mathrm{MN} / \beta H P C D$	5.4 ± 0.0	6.1	5.4 ± 0.1	1.2 ± 0.0
$1 \mathrm{MN} / \gamma H P C D$	5.2 ± 0.1	6.7 ± 0.1	1.3 ± 0.0	

[^2]

Fig. 9 Induced circular dichroism spectra (ICD) at $25^{\circ} \mathrm{C}$ of 1 MN and $1 \mathrm{MN} / \mathrm{HPCD}$ water solutions, for a $[H P C D]$ which provides a 0.7 fraction of complexed guest
not shown, were also positive. As with HPCD solutions, the intensity was slightly larger for the latter one. The spectrum for $1 \mathrm{MN} / \alpha \mathrm{CD}$, on the other hand, exhibited a low intensity negative band. The sign of the $I C D$ when the
chromophore is located mostly outside the cavity becomes opposite to that of the one inside [67-69]. Fluorescence and Molecular Mechanics results [29] for $1 \mathrm{MN} / \alpha \mathrm{CD}$ systems indicate that 1 MN is predominantly outside the $\alpha \mathrm{CD}$ cavity when it approaches in V mode and penetrates a little more when it does in the H one. In both cases a negative $I C D$ may be expected. The fact that 1 MN prefers approaching the $\gamma C D$ by the VP orientation and penetrates totally inside its cavity may agree with a large positive band. For the $1 \mathrm{MN}: \beta C D$ complex two possible $V P$ structures were proposed [29]. The energetically favourable one, where 1 MN penetrates almost totally inside the cavity by the primary face, would be in agreement with the positive $I C D$ spectra.

Figure 10 depicts $\mathrm{E}_{\text {binding }}$ variations obtained from the MM analysis for 1 MN approaching $\alpha-, \beta$ - and $\gamma H P C D s$ by four VP, VnP, HP and HnP orientations. As Fig. 10 shows, whatever the 1 MN orientations is, the $1 \mathrm{MN} / \alpha H P C D$ system exhibits a very high repulsive energetic barrier beginning at $y=\sim 5 \AA$, which impedes 1 MN from going further along this y coordinate. This barrier, however, is hardly significant for $1 \mathrm{MN} / \beta \mathrm{CD}$ and $1 \mathrm{MN} / \gamma \mathrm{CD}$ systems when 1 MN approaches the $H P \mathrm{CD}$ by $\mathrm{V} P$ and $\mathrm{V} n P$ orientations. Both $V P$ and $V n P$ orientations yield very similar binding energies changes upon approaching and are considerably more favorable than the $\mathrm{H} P$ or $\mathrm{H} n P$ ones. Thus, 1 MN may have no chance at all to totally penetrate the $\alpha H P C D$ cavity. This penetration is notably deeper, however, when β - and $\gamma H P C D$ s are used as hosts. The fact that 1 MN is totally shielded from the solvent in the latter complexes while it is not totally shielded when 1 MN complexes with $\alpha H P C D$ should explain the $\Delta S^{0}>0$ and $\Delta S^{0}<0$ respectively.

In Fig. 11 some of the possible structures with minima binding energies (MBE) for $1 \mathrm{MN} / H P \mathrm{CD}$ systems are depicted. These are reached at $y=5.3 \AA ; \mathrm{E}_{\mathrm{MBE}}=-41.3 \mathrm{kJmol}^{-1}$ $\left(\delta=90.3^{\circ}\right)$ and $y=5.8 \AA ; \mathrm{E}_{\mathrm{MBE}}=-34.0 \mathrm{kJmol}^{-1}\left(\delta=9.9^{\circ}\right)$ for

Fig. 10 Variation of binding energy upon 1 MN approaching to $H P C D$ along the y coordinate (\AA) for the three systems

Fig. 11 Some MBE structures for the 1 MN complexes with $\alpha H P C D$ (1 and 2), $\beta H P C D$ (3) and $\gamma H P C D$ (4) obtained from representation depicted in Fig. 10

$1 \mathrm{MN} / \alpha H P \mathrm{CD}(\mathrm{H} n P)(1)$

1MN/ $\mathbf{\beta H P C D}$ (VP) (3)

1MN/ $\alpha H P C D(V P)(2)$

$1 \mathrm{MN} / \boldsymbol{\gamma} \mathbf{H P C D}(\mathrm{VnP})(4)$
$1 \mathrm{MN} / \alpha H P \mathrm{CD} \mathrm{H} n P$ and $\mathrm{V} P$ respectively; $y=1.8 \AA ; \mathrm{E}_{\mathrm{MBE}}=$ $-63.5 \mathrm{kJmol}^{-1} \quad\left(\delta=10.4^{\circ}\right)$ and $y=-0.72 \AA ; \mathrm{E}_{\mathrm{MBE}}=-62.4$ $\mathrm{kJmol}^{-1}\left(\delta=11.2^{\circ}\right)$ for $1 \mathrm{MN} / \beta H P \mathrm{CD}(\mathrm{V} P)$ and $1 \mathrm{MN} / \gamma H P C D$ $(\mathrm{V} n P)$ complexes respectively. Vertical 1 MN oriented structures for these complexes (2, 3 and 4), with δ (short naphthalene axis and the n-fold rotation CD axis angle) relatively near zero, may agree with the positive sign of $I C D$. The $I C D$ intensity increase may be related with the penetration depth of the 1 MN guest (y coordinate) or its relative orientation (value of δ) inside the $H P C D$.

These structures do not disagree with the trend observed in r_{∞} values, taking into consideration the possibility of certain movement of 1 MN inside the largest size $H P C D$ cavities. They may also agree with the results of the quenching experiments and the changes of thermodynamics parameters upon complexation.

Most of the $\mathrm{E}_{\text {binding }}$ at the MBE is due to non-bonded van der Waals interactions. Electrostatics represents a low percentage of the total binding energy. The total potential energy for $1 \mathrm{MN} / H P C D$ systems slightly decreases with
complexation. The van der Waals interactions are responsible for this decrease. However, they do not represent the largest contributions to the total potential energy of the system. The strain energy, correlated to the HPCD cavity size, is the main contribution to the total energy. The latter energy drastically increases for $1 \mathrm{MN} / \alpha H P C D$ complexation, only slightly for $\beta H P C D$ and a little for $\gamma H P C D$. The electrostatics interactions hardly change upon complexation.

Conclusions

The binding constants for the (1:1) 1 MN :HPCD complexes are lower compared to the ones obtained with the less bulky 2 MN isomer, which is able to penetrate more deeply into the cavities, but they are always larger than when 1 MN complexes with the natural un-substituted CDs. Complexation of 1 MN with $H P C D$ s is accompanied by a less favorable ΔH^{0} than that obtained with their natural counterparts. These enthalpy changes agree with the fact
that the van der Waals interactions are mainly responsible for the $1 \mathrm{MN} / H P C D$ complexation. ΔS^{0} may mainly be attributed to the loss of the ordered water around the guest and host cavity upon complexation. This could account for the different penetration and location of the 1 MN guest in the complexes. ICD spectra, anisotropies at $[\mathrm{HPCD}] \rightarrow \infty$ and bimolecular quenching constants also agree with the MM proposed structures for these complexes.

Acknowledgements This research was supported by Comunidad de Madrid (CAM S-055/MAT/0227), Ministerio de Educacion (CTQ2005-04710/BQU) and Consejería de Educación y Ciencia de la Junta de Castilla-La Mancha (grant to M.J.G-A). We wish to express our thanks to M.L. Heijnen for assistance with the preparation of the manuscript.

References

1. Szejtli J, Osa T (1996) Comprehensive supramolecular chemistry, vol. 3, Cyclodextrins. Elsevier, Oxford
2. D’Souza VT, Lipkowitz KB (eds) (1998) Cyclodextrins. Chem Rev 98(5):1741-2076. doi:10.1021/cr980027p
3. Harada A (2001) Cyclodextrin-based molecular machines. Acc Chem Res 34:456-464. doi:10.1021/ar0001741
4. Nepogodiev SA, Stoddart JF (1998) Cyclodextrin-based catenanes and rotaxanes. Chem Rev 98(5):1959-1976. doi:10.1021/ cr970049w
5. Flamigni L (1993) Inclusion of fluorescein and halogenated derivatives in α-, β-, and γ-cyclodextrins: a steady-state and picosecond time-resolved study. J Phys Chem 97(38):9566-9572. doi:10.1021/j100140a006
6. Fraiji EK Jr., Cregan TR, Werner TC (1994) Binding of 2acetylnaphthalene to cyclodextrins studied by fluorescence quenching. Appl Spectrosc 48(1):79-84. doi:10.1366/ 0003702944027624
7. Nakamura A, Sato S, Hamasaki K, Ueno A, Toda F (1995) Association of $1: 1$ inclusion complexes of cyclodextrins into homo- and heterodimers: a spectroscopic study using a TICTforming fluorescent probe as a guest compound. J Phys Chem 99 (27):10959-10959. doi:10.1021/j100027a040
8. van Stam J, De Feyter S, De Schryver FC, Evans CH (1996) 2Naphthol complexation by β-cyclodextrin: influence of added short linear alcohols. J Phys Chem 100(51):19959-1996. doi:10.1021/jp961575e
9. Hamai S (1997) Inclusion of 2-chloronaphthalene by α-Cyclodextrin and room-temperature phosphorescence of 2-chloronaphthalene in aqueous D -glucose solutions containing α-cyclodextrin. J Phys Chem B 101(9):1707-1712. doi:10.1021/jp963197j
10. Madrid JM, Villafruela M, Serrano R, Mendicuti F (1999) Experimental thermodynamics and molecular mechanics calculations of inclusion complexes of 9-methyl anthracenoate and 1methyl pyrenoate with β-cyclodextrin. J Phys Chem B 103 (23):4847-4853. doi:10.1021/jp9838240
11. Sadlej-Sosnowska N, Siemiarczuk A (2001) A time resolved and steady-state fluorescence quenching study on naproxen and its cyclodextrin complexes in water. J Photochem Photobiol Chem 138:35-40. doi:10.1016/S1010-6030(00)00375-0
12. Di Marino A, Mendicuti F (2004) Thermodynamics of complexation of dimethyl esters of tere-, iso-, and phthalic acids with α and β-cyclodextrins. Appl Spectrosc 58(7):823-830. doi:10.1366/0003702041389283
13. Shannigrahi M, Bagchi S (2005) Time resolved fluorescence study of ketocyanine dye- β cyclodextrin interactions in aqueous and non-aqueous media. Chem Phys Lett 403(1-3):55-61. doi:10.1016/j.cplett.2004.12.098
14. Turro NJ, Okubo T, Weed GC (1982) Enhancement of intramolecular excimer formation of 1,3-bichromophoric propanes via application of high pressure and via complexation with cyclodextrins. Protection from oxygen quenching. Photochem Photobiol 35(3):325-329
15. Kano K, Takenoshita I, Ogawa T (1982) γ-Cyclodextrinenhanced excimer fluorescence of pyrene and effect of n-butyl alcohol. Chem Lett Chem Soc Jpn 3:321-324
16. Hamai S (1989) Pyrene excimer formation in γ-cyclodextrin solutions: association of $1: 1$ pyrene- γ-cyclodextrin inclusion compounds. J Phys Chem 93(17):6527-6529. doi:10.1021/ j100354a048
17. Pistolis G (1999) Dual excimer emission of p-terphenyl induced by γ-cyclodextrin in aqueous solutions. Chem Phys Lett 304 (5,6):371-377
18. Sainz-Rozas PR, Isasi JR, González-Gaitano G (2005) Spectral and photophysical properties of 2-dibenzofuranol and its inclusion complexes with cyclodextrins. J Photochem Photobiol Chem 173 (3):319-327. doi:10.1016/j.jphotochem.2005.04.011
19. Catena GC, Bright FV (1989) Thermodynamic study on the effects of β-cyclodextrin inclusion with anilinonaphthalenesulfonates. Anal Chem 61(8):905-909. doi:10.1021/ac00183a024
20. Madrid JM, Mendicuti F, Mattice WL (1998) Inclusion complexes of 2-methylnaphthoate and γ-cyclodextrin: experimental thermodynamics and molecular mechanics calculations. J Phys Chem B 102(11):2037-2044. doi:10.1021/jp9728870
21. Di Marino A, Mendicuti F (2002) Fluorescence of the complexes of 2-methylnaphthoate and 2-hydroxypropyl- $\alpha-,-\beta-$, and $-\gamma-$ cyclodextrins in aqueous solution. Appl Spectrosc 56(12):1579 1587. doi:10.1366/000370202321115841
22. Pastor I, Di Marino A, Mendicuti F (2002) Thermodynamics and molecular mechanics studies on α-and β-cyclodextrins complexation and diethyl 2,6-naphthalenedicarboxylate guest in aqueous medium. J Phys Chem B 106(8):1995-2003. doi:10.1021/ jp013118q
23. Muñoz de la Peña A, Ndou TT, Zung JB, Warner IM (1991) Stoichiometry and formation constants of pyrene inclusion complexes with β - and γ-cyclodextrin. J Phys Chem 95 (8):3330-3334. doi:10.1021/j100161a067
24. Will AY, Muñoz de la Peña A, Ndou TT, Warner IM (1993) Spectroscopic studies of the interaction of tert-butylamine and n propylamine with the β-cyclodextrin-pyrene complex. Appl Spectrosc 47(3):277-282. doi:10.1366/0003702934066749
25. Madrid JM, Mendicuti F (1997) Thermodynamic parameters of the inclusion complexes of 2-methylnaphthoate and α - and β cyclodextrins. Appl Spectrosc 51(11):1621-1627. doi:10.1366/ 0003702971939604
26. Cervero M, Di Marino A, Mendicuti F (2000) Inclusion complexes of dimethyl 2,6-naphthalenedicarboxylate with α and β-cyclodextrins in aqueous medium: thermodynamics and molecular mechanics studies. J Phys Chem B 104(7):1572-1580. doi:10.1021/jp993418w
27. Pastor I, Di Marino A, Mendicuti F (2005) Complexes of dihexyl 2,6-naphthalenedicarboxylate with α - and β-cyclodextrins: fluorescence and molecular modelling. J Photochem Photobiol Chem 173(3):238-247. doi:10.1016/j.jphotochem.2005.04.003
28. Alvariza C, Usero R, Mendicuti F (2007) Binding of dimethyl 2,3-naphthalenedicarboxylate with α-, β - and γ-cyclodextrins in aqueous solution. Spectrochem. Acta Part A 67(2):420-429. doi:10.1016/j.saa.2006.07.039
29. Di Marino A, Rubio L, Mendicuti F (2007) Fluorescence and molecular mechanics of 1-methyl naphthalenecarboxylate/cyclo-
dextrin complexes in aqueous medium. J Incl Phenom Macrocycl Chem 58:103-114. doi:10.1007/s10847-006-9129-7
30. Nelson G, Patonay G, Warner IM (1987) Fluorescence lifetime study of cyclodextrin complexes of substituted naphthalenes. Appl Spectrosc 41(7):1235-1238. doi:10.1366/0003702 874447617
31. Ferreira JAB, Costa SMB (2005) Non-radiative decay in rhodamines: role of $1: 1$ and $1: 2$ molecular complexation with β cyclodextrin. J Photochem Photobiol Chem 173(3):309-318. doi:10.1016/j.jphotochem.2005.04.010
32. Serna L, Di Marino A, Mendicuti F (2005) Inclusion complexes of a bichromophoric diester containing anthracene and naphthalene groups with alpha- and beta-cyclodextrins: thermodynamics and molecular mechanics. Spectrochim Acta Part A Mol Biomol Spectrosc 61(8):1945-1954. doi:10.1016/j.saa.2004.07.033
33. Hossain MA, Mihara H, Ueno A (2003) Fluorescence resonance energy transfer in a novel cyclodextrin-peptide conjugate for detecting steroid molecules. Bioorg Med Chem Lett 13(24):43054308. doi:10.1016/j.bmcl.2003.09.051
34. Park JW, Lee SY, Kim SM (2005) Efficient inclusion complexation and intra-complex excitation energy transfer between aromatic group-modified β-cyclodextrins and a hemicyanine dye. J Photochem Photobiol Chem 173(3):271-278. doi:10.1016/j.jphotochem.2005.04.006
35. Nigam S, Durocher G (1997) Inclusion complexes of some 3Hindoles with cyclodextrins studied through excited state dynamics and steady state absorption and fluorescence spectroscopy. J Photochem Photobiol A: Chem 103(1,2):143-152
36. Lipkowitz KB (1998) Applications of computational chemistry to the study of cyclodextrins. Chem Rev 98(5):1829-1873. doi:10.1021/cr9700179
37. Jursic BS, Zdravkovski Z, French AD (1996) Molecular modeling methodology of β-cyclodextrin inclusion complexes. J Mol Struct Theochem 366(1-2):113-117. doi:10.1016/0166-1280(96)04521-6
38. Salvatierra D, Jaime C, Virgili A, Sanchez-Ferrando F (1996) Determination of the inclusion geometry for the β-cyclodextrin/ benzoic acid complex by NMR and molecular modeling. J Org Chem 61(26):9578-9581. doi:10.1021/jo9612032
39. Madrid JM, Pozuelo J, Mendicuti F, Mattice WL (1997) Molecular mechanics study of the inclusion complexes of 2methyl naphthoate with α - and β-cyclodextrins. J Colloid Interface Sci 193(1):112-120. doi:10.1006/jcis.1997.5061
40. Pozuelo J, Nakamura A, Mendicuti F (1999) Molecular mechanics study of the complexes of β-cyclodextrin with 4-(dimethylamino) benzonitrile and benzonitrile. J Incl Phenom Macrocycl Chem 35 (3):467-485. doi:10.1023/A:1008018502072
41. Cervello E, Mazzucchi F, Jaime C (2000) Molecular mechanics and molecular dynamics calculations of the β-cyclodextrin inclusion complexes with m -, and p-nitrophenyl alkanoates. J Mol Struct (Theochem) 530(1,2):155-163
42. Lino ACC, Takahata Y, Jaime C (2002) α-and β-cyclodextrin complexes with n-alkyl carboxylic acids and n-alkyl p-hydroxy benzoates. A molecular mechanics study of $1: 1$ and $1: 2$ associations. J Mol Struct Theochem 594(3):207-213. doi:10.1016/S0166-1280(02)00393-7
43. Di Marino A, Mendicuti F (2007) Rationalizing some experimental facts on the complexation of 2-methyl naphthalenecarboxylate and hydroxypropyled cyclodextrins by molecular mechanics and molecular dynamics. J Incl Phenom Macrocycl Chem 58(3-4):295-305. doi:10.1007/s10847-006-9157-3
44. Pozuelo J, Mendicuti F, Mattice WL (1997) Inclusion complexes of chain molecules with cycloamyloses. 2. molecular dynamics simulations of polyrotaxanes formed by poly(ethylene glycol) and α-cyclodextrins. Macromolecules 30(12):3685-3690. doi:10.1021/ma961270y
45. Lipkowitz KB, Pearl G, Coner B, Peterson MA (1997) Explanation of where and how enantioselective binding takes place on permethylated β-cyclodextrin, a chiral stationary phase used in gas chromatography. J Am Chem Soc 119(3):600-610. doi:10.1021/ja963076x
46. Köhler J, Hohla M, Söllner R, Eberle H-J (1998) Cyclohexadecanone derivative $/ \gamma$-cyclodextrin complexes MD simulations and AMSOL calculations in vacuo and in aquo compared with experimental finding. Supramol Sci 5(1-2):101-116. doi:10.1016/S0968-5677(97)00065-5
47. Pozuelo J, Mendicuti F, Mattice WL (1998) Inclusion complexes of chain molecules with cycloamylosesIII. Molecular dynamics simulations of polyrotaxanes formed by polypropylene glycol and β-cyclodextrins. Polym J 30(6):479-484. doi:10.1295/polymj.30.479
48. Dodziuk H, Kozminski W, Lukin O, Sybilska D (2000) NMR manifestations and molecular dynamics modeling of chiral recognition of α-pinenes by α-cyclodextrin. J Mol Struct Theochem 525:205-212
49. Grabuleda X, Ivanov P, Jaime C (2003) Computational studies on pseudorotaxanes by molecular dynamics and free energy perturbation simulations. J Org Chem 68(4):1539-1547. doi:10.1021/ jo0265636
50. Krois D, Brinker UH (2006) In: Dodziuk H (ed) Cyclodextrins and their complexes, Chapter 10.4. Wiley-VCH, pp 289-298
51. Murphy RS, Barros TC, Mayer B, Marconi G, Bohne C (2000) Photophysical and theoretical studies on the stereoselective complexation of naphthylethanols with β-cyclodextrin. Langmuir 16(23):8780-8788. doi:10.1021/la0005311
52. Mendicuti F, Patel B, Mattice WL (1990) Intramolecular formation of excimers in model compounds for polyesters containing naphthalene units: α, ω-diesters from 1-naphthoic acid and five glycols. Polymer (Guildf) 31(10):1877-1882. doi:10.1016/0032-3861(90)90010-V
53. O’Connor DV, Ware WR, Andre JC (1979) Deconvolution of fluorescence decay curves. A critical comparison of techniques. J Phys Chem 83:1333-1343. doi:10.1021/j100473a019
54. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer, New York, p 129
55. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer, New York, p 298
56. Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim, p 89
57. Mendicuti F (2006) Application of fluorescence techniques and modelling to the study of the complexation of chromophorecontaining guests with cyclodextrins. Trends Phys Chem II, 6177
58. Sybyl 6.9; Tripos Associates; St. Louis, Missouri, USA
59. Clark M, Cramer RC III, Van Opdenbosch N (1989) Validation of the general purpose Tripos 5.2 force field. J Comput Chem 10 (8):982-1012. doi:10.1002/jcc. 540100804
60. MOPAC (AM1). Included in the Sybyl package
61. Usero R, Alvariza C, González-Álvarez MJ, Mendicuti F (2008) Complexation of dimethyl 2,3-naphthalenedicarboxylate with 2hydroxypropyl $-\alpha-,-\beta$ - and $-\gamma$-cyclodextrins in aqueous solution by fluorescence, circular dichroism and molecular mechanics. J Fluoresc (in press)
62. Job P (1928) Formation and stability of inorganic complexes in solution. Ann Chim 9:113-203
63. Loukas YL (1997) Multiple complex formation of fluorescent compounds with cyclodextrins: efficient determination and evaluation of the binding constant with improved fluorometric studies. J Phys Chem B 101:4863-4866. doi:10.1021/jp9638189
64. Platt JR (1949) Classification of spectra of cata-condensed hydrocarbons. J Chem Phys 17:484-495. doi:10.1063/1.174 7293
65. Kodaka M (1998) Application of a general rule to induced circular dichroism of naphthalene derivatives complexed with cyclodextrins. J Phys Chem 102(42):8101-8103
66. Yorozu T, Hoshino M, Imamura M (1982) Fluorescence studies of pyrene inclusion complexes with α-, β-, and γ-cyclodextrins in aqueous solutionsEvidence for formation of pyrene dimer in $\gamma-$ cyclodextrin cavity. J Phys Chem 86(22):4426-4429. doi:10.1021/j100219a031
67. Kodaka M (1991) Sign of circular dichroism induced by β cyclodextrin. J Phys Chem 95(6):2110-2112. doi:10.1021/ j100159a005
68. Kodaka M (1993) A general rule for circular dichroism induced by a chiral macrocycle. J Am Chem Soc 115(9):3702-3705. doi:10.1021/ja00062a040
69. Neckers DC, Volman DH, VonBünau G (1996) Advances in photochemistry. Wiley, New York, pp 5-35

[^0]: M. J. González-Álvarez \cdot A. Di Marino \cdot F. Mendicuti (\triangle)

 Departamento de Química Física, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
 e-mail: francisco.mendicuti@uah.es

[^1]: K values were obtained by using the non-linear (Eqs. 8 and 9) and (bold) the linear (Eq. 12) adjustments

[^2]: Quencher was diacetyl, x2 $=0.75$ and $\lambda e x=294 \mathrm{~nm}$

